cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341506 E.g.f.: Product_{i>=1, j>=1} (1 + x^(i*j) / (i*j)!).

Original entry on oeis.org

1, 1, 2, 8, 17, 87, 366, 1514, 8770, 45585, 267586, 1612624, 11914416, 73215391, 522906754, 4364545708, 33150679697, 263662491935, 2151338992440, 20815916251604, 178593028936507, 1714283809331191, 15531842607259512, 158682350653110712, 1667852117293837230
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Product[(1 + x^k/k!)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, -(n - 1)! Sum[Sum[d DivisorSigma[0, d]/(-d!)^(k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: Product_{k>=1} (1 + x^k / k!)^sigma_0(k).

A341876 E.g.f.: Product_{i>=1, j>=1} (1 + x^(i*j)/(i*j)!) / (1 - x^(i*j)/(i*j)!).

Original entry on oeis.org

1, 2, 8, 40, 230, 1584, 12096, 103828, 975284, 10045182, 111724064, 1342990356, 17288290776, 238095398064, 3488772309480, 54304690352816, 894465560384026, 15564259644205288, 285282543243628356, 5498843253154821196, 111203939051325462504, 2355689449259544720344
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 22 2021

Keywords

Comments

Exponential convolution of A341505 and A341506.

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1 + x^(i*j)/(i*j)!)/(1 - x^(i*j)/(i*j)!), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 25; CoefficientList[Series[Product[((1 + x^k/k!)/(1 - x^k/k!))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]*Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A341505(k) * A341506(n-k).
a(n) ~ c * n!, where c = 2*Product_{k>=2} ((k!+1)/(k!-1))^sigma_0(k) = 47.4139841600096613008093034069984807541890052309118213077603602425211186...
Showing 1-2 of 2 results.