cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341518 Numbers k such that the primorial base representation of their arithmetic derivative does not contain digits larger than 1.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 23, 28, 29, 30, 31, 37, 41, 43, 45, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 83, 87, 89, 97, 101, 103, 107, 108, 109, 112, 113, 127, 131, 136, 137, 139, 149, 151, 155, 157, 161, 163, 167, 173, 179, 181, 189, 191, 193, 197, 198, 199, 203, 209, 210, 211, 212, 217
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Comments

Numbers k for which A328390(k) <= 1, numbers k such that A003415(k) is in A276156.
Numbers k such that A327859(k) = A276086(A003415(k)) is squarefree.

Crossrefs

Positions of nonzero terms in A341517.
Subsequences: A000040, A327978, A328232, A369647 (terms k where A051903(k) obtains novel values).
Cf. also A327969.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); };
    isA341518(n) = ismaxprimobasedigit_at_most(A003415(n),1); \\ Antti Karttunen, Feb 03 2024

Formula

For all n > 2, A328390(a(n)) = A328114(A003415(a(n))) = 1.