cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341525 Numerator of A003973(n) / A003961(n).

Original entry on oeis.org

1, 4, 6, 13, 8, 8, 12, 40, 31, 32, 14, 26, 18, 16, 48, 121, 20, 124, 24, 104, 72, 56, 30, 16, 57, 24, 156, 52, 32, 64, 38, 364, 84, 80, 96, 403, 42, 32, 108, 320, 44, 96, 48, 14, 248, 40, 54, 242, 133, 76, 24, 26, 60, 208, 16, 160, 144, 128, 62, 208, 68, 152, 372, 1093, 144, 112, 72, 260, 36, 128, 74, 248, 80, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Also numerator of the ratio (A341528(n)/A341529(n)) / (n/sigma(n)).

Crossrefs

Cf. A336849 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((p - 1)*p^e); g[p_, e_] := f[NextPrime[p], e]; a[1] = 1; a[n_] := Numerator[Times @@ g @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341525(n) = { my(u=A003961(n), s=sigma(u)); (s/gcd(u, s)); };

Formula

a(n) = A017665(A003961(n)).
a(n) = A003973(n) / A336850(n) = A003973(n) / gcd(A003961(n), A003973(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A341525(k)/A336849(k) = 1 / Product_{p prime} (1 - 1/(p*nextprime(p))) = 1.3766054560..., where nextprime(p) = A151800(p). - Amiram Eldar, Dec 28 2024