cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341526 Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 8, 9, 52, 20, 4, 21, 64, 279, 160, 77, 26, 117, 28, 6, 1936, 170, 248, 114, 1040, 189, 308, 115, 32, 1425, 104, 1053, 26, 464, 16, 589, 1664, 231, 1360, 10, 124, 777, 304, 1053, 1280, 902, 42, 516, 22, 372, 230, 423, 968, 343, 3800, 17, 676, 530, 468, 110, 224, 513, 3712, 1829, 104, 2074, 589, 5859, 69952, 780, 154
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Like the ratios sigma(n)/n, A003973(n)/A003961(n) and A003961(n)/n, also the ratio r(n) = A341528(n)/A341529(n) is multiplicative: if gcd(x,y) = 1, r(x*y) = r(x)*r(y).

Crossrefs

Cf. A341527 (denominators).
Cf. A341626 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341528(n) / A341530(n) = A341528(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) < A341527(n).