A341580 Number of steps needed to reach position "YZ^(n-1)" in the Towers of Hanoi exchanging disks puzzle with 3 pegs and n disks.
0, 1, 3, 6, 12, 23, 44, 82, 153, 284, 528, 979, 1816, 3366, 6241, 11568, 21444, 39747, 73676, 136562, 253129, 469188, 869672, 1611987, 2987920, 5538286, 10265553, 19027816, 35269212, 65373603, 121173924, 224603162, 416315513, 771665884, 1430329248, 2651201459
Offset: 0
Examples
As a graph where each vertex is a configuration of disks on pegs and each edge is a step (as drawn by Scorer et al.), A \ / \ | n=2 disks *---* | A to B / \ | steps * * | a(2) = 3 / \ / \ | *---B---*---* / / \ * / \ * n=3 disks / \ / \ / \ A to D *---C *---* steps / \ / \ a(3) = 6 * *-------* * / \ / \ / \ / \ *---*---*---D *---*---*---* For n=3, the recurrence using A341581 is a(2)=3 from A to B, A341581(2)=2 from D to C, and +1 from B to C.
Links
- Kevin Ryde, Table of n, a(n) for n = 0..700
- Paul K. Stockmeyer et al., Exchanging Disks in the Tower of Hanoi, International Journal of Computer Mathematics, volume 59, number 1-2, pages 37-47, 1995. Also author's copy. a(n) = g(n) in section 3.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2,-2).
- Index entries for sequences related to Towers of Hanoi
Programs
-
Mathematica
CoefficientList[Series[x (1+x+x^3)/((1-x)(1-x-x^2-2x^4)),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2,-2},{0,1,3,6,12},40] (* Harvey P. Dale, Aug 26 2021 *)
-
PARI
my(p=Mod('x,'x^4-'x^3-'x^2-2)); a(n) = subst(lift(p^(n+1)),'x,2)/2 - 1;
Formula
a(n) = a(n-1) + A341581(n-1) + 1, for n>=1. [Stockmeyer et al.]
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) - 2*a(n-5).
G.f.: x * (1 + x + x^3) /( (1-x) * (1 - x - x^2 - 2*x^4) ).
G.f.: -1/(1-x) + (1 + x + x^2 + x^3)/(1 - x - x^2 - 2*x^4).
Comments