A341594 Number of strictly superior odd divisors of n.
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2, 0, 2, 1, 1, 1, 1, 1, 3, 0, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 0, 1, 1, 3, 1, 1, 2, 1, 1, 4
Offset: 1
Keywords
Examples
The a(n) divisors for n = 3, 15, 45, 105, 315, 405, 945, 1575, 1890: 3 5 9 15 21 27 35 45 45 15 15 21 35 45 45 63 63 45 35 45 81 63 75 105 105 63 135 105 105 135 105 405 135 175 189 315 189 225 315 315 315 945 945 525 1575
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
On odd indices, equals A056924 (number of strictly superior divisors).
The inferior version is A069288.
Positions of zeros are A116882.
Positions of nonzero terms are A116883.
The strictly inferior version is A333805.
The version for squarefree instead of odd divisors is A341595.
The version for prime instead of odd divisors is A341642.
The version for prime-power instead of odd divisors is A341644.
The superior version is A341675.
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A140271 selects the smallest strictly superior divisor.
A207375 lists central divisors.
A341673 lists strictly superior divisors.
Programs
-
Mathematica
Table[Length[Select[Divisors[n],OddQ[#]&>n/#&]],{n,100}]
-
PARI
A341594(n) = sumdiv(n,d,(d%2)*(d>(n/d))); \\ Antti Karttunen, Feb 23 2021
Comments