A341600 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-3/5). This is the 1 (mod 4) case.
1, 5, 5, 5, 5, 69, 197, 453, 453, 1477, 3525, 3525, 3525, 3525, 3525, 3525, 134597, 396741, 396741, 1445317, 1445317, 1445317, 9833925, 26611141, 60165573, 127274437, 261492165, 529927621, 1066798533, 2140540357, 2140540357, 2140540357, 10730474949, 27910344133
Offset: 2
Examples
The unique number k in [1, 4] and congruent to 1 modulo 4 such that 5*k^2 + 3 is divisible by 8 is 1, so a(2) = 1. 5*a(2)^2 + 3 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5. 5*a(3)^2 + 3 = 128 which is divisible by 32, 64 and 128, so a(6) = a(5) = a(4) = a(3) = 5. ...
Links
- Jianing Song, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
PARI
a(n) = truncate(-sqrt(-3/5+O(2^(n+1))))
Formula
a(2) = 1; for n >= 3, a(n) = a(n-1) if 5*a(n-1)^2 + 3 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A341601(n).
a(n) = Sum_{i=0..n-1} A341602(i)*2^i.
a(n) == Fibonacci(2^(2*n-1)) (mod 2^n). - Peter Bala, Nov 11 2022
Comments