cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341608 Square array A(n,k) = A341524(A246278(n,k)), read by falling antidiagonals; number of prime factors (with mult.) in the denominator of abundancy index as applied onto prime shift array A246278.

Original entry on oeis.org

1, 2, 1, 0, 2, 1, 3, 1, 2, 1, 1, 3, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 3, 2, 2, 1, 4, 1, 3, 1, 3, 2, 2, 1, 2, 4, 2, 3, 2, 3, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 2, 2, 1, 1, 3, 3, 4, 2, 3, 2, 3, 2, 2, 1, 1, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 2, 3, 2, 2, 1, 0, 1, 4, 2, 3, 3, 4, 2, 3, 2, 3, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n=  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21
  2n=  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
-----+---------------------------------------------------------------
   1 | 1, 2, 0, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 0, 1, 5, 1, 4, 1, 2, 1,
   2 | 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 2, 1, 2, 2, 5, 2, 4, 1, 4, 2,
   3 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 1, 3, 3, 5, 2, 4, 1, 4, 2,
   4 | 1, 2, 2, 3,*1, 3, 2, 4,*2,*2, 2, 4, 2, 3,*2, 5, 2,*3, 2,*3, 3,
   5 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2,*2, 3, 5, 2, 4, 2, 4, 3,
   6 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2,*3, 2, 3, 3, 5, 2, 4, 2, 4, 3,
   7 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
   8 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3,*1, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
   9 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  10 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  11 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2,*3, 2, 3, 3, 5, 2, 4,*1, 4, 3,
  12 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  13 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  14 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  15 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2,*2, 3, 5, 2, 4, 2, 4, 3,
  16 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  17 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  18 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  19 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  20 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  21 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
etc.
Positions where columns are not monotonic (i.e., with sudden drops) are marked with an asterisk (*). See the example section of A341606 for their further elaboration.
		

Crossrefs

Sequence A341524 applied to prime shift array A246278.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A017666(n) = denominator(sigma(n)/n);
    A341608sq(row,col) = bigomega(A017666(A246278sq(row,col)));
    A341608list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341608sq(col,(a-(col-1))))); (v); };
    v341608 = A341608list(up_to);
    A341608(n) = v341608[n];

Formula

A(n,k) = A001222(A341606(n,k)) = A001222(A017666(A246278(n,k))).