cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341610 Nonprimitive terms of A246282: numbers k that have more than one divisor d|k such that A003961(d) > 2*d.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156, 160, 162, 164, 165
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Comments

Numbers k for which A337345(k) > 1, or equally, for which A337346(k) > 0.
Obviously A337346(n) = 0 for any noncomposite and for any semiprime, thus this is a subsequence of A033942. The first term of A033942 not present here is 125, as A337345(125) = 1.
Empirically checked: in range 1 .. 2^31, all abundant numbers are found in this sequence. For proving this, we should concentrate only on checking A091191, as the set A005101 \ A091191 (non-primitive abundant numbers) is certainly included, as for any divisor d for which sigma(d) > 2*d (or even sigma(d) >= 2*d), we also have A003961(d) > 2*d.

Crossrefs

Cf. A337345.
Positions of nonzero terms in A337346.
Setwise difference A246282 \ A337372.
Conjectured subsequence: A005101. (Clearly abundant numbers are all in A246282).
Differs from its subsequence A033942 for the first time at n=52, with a(52) = 126, while A033942(52) = 125.

Programs

  • Mathematica
    Block[{nn = 165, s}, s = {1}~Join~Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] &, nn - 1, 2]; Select[Range[nn], 1 < DivisorSum[#, 1 &, s[[#]] > 2 # &] &]] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA341610(n) = (1A003961(d)>(d+d)));