A341618 a(n) = 0 if n is not a primitive nondeficient number, otherwise a(n) is the number of primitive nondeficient divisors of the last number in the iteration x -> A003961(x) (starting from x=n) for which that count (A337690) is nonzero.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A341619(n) = if(sigma(n) < (2*n), 0, fordiv(n, d, if((d
= 2*d), return(0))); (1)); \\ After code in A071395 A337690(n) = sumdiv(n,d,A341619(d)); A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A341618(n) = { my(t, u=0); while((t=A337690(n))>0, u=t; n = A003961(n)); (u); };