cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341620 Number of nondeficient divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 6, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 5, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 6, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 21 2021

Keywords

Comments

Number of nondeficient numbers (A023196) dividing n.

Crossrefs

Differs from a derived sequence A341624 for the first time at n=120, where a(120)=8, while A341624(120)=1.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, DivisorSigma[1, #] >= 2*# &]; Array[a, 120] (* Amiram Eldar, Feb 22 2021 *)
  • PARI
    A294936(n) = (sigma(n, -1)>=2); \\ From A294936.
    A341620(n) = sumdiv(n,d,A294936(d));
    
  • PARI
    A341620(n) = sumdiv(n,d,(sigma(d)>=(2*d)));

Formula

a(n) = Sum_{d|n} A294936(d).
a(n) = A294927(n) + A294936(n).
a(n) = A080224(n) + A080225(n) = A000005(n) - A080226(n).
a(n) >= A337690(n) for all n.
a(n) = 1 iff A341619(n) = 1.