cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341626 Square array A(n,k) = A341526(A246278(n,k)), read by falling antidiagonals; Numerators of the columnwise first quotients of A341605/A341606.

Original entry on oeis.org

8, 52, 9, 4, 279, 20, 64, 6, 1425, 21, 160, 1053, 10, 343, 77, 26, 189, 12500, 49, 22143, 117, 28, 372, 110, 62769, 33, 51883, 170, 1936, 231, 4275, 351, 791945, 130, 110109, 114, 248, 5751, 780, 2401, 6545, 573417, 68, 199633, 115, 1040, 2565, 1750625, 595, 199287, 13338, 1778506, 57, 460759, 464
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

See comments in A341605.

Examples

			The top left corner of the array:
   n =  1       2    3        4      5        6      7             8        9
  2n =  2       4    6        8     10       12     14            16       18
----+--------------------------------------------------------------------------
  1 |   8,     52,   4,      64,   160,      26,    28,         1936,     248,
  2 |   9,    279,   6,    1053,   189,     372,   231,         5751,    2565,
  3 |  20,   1425,  10,   12500,   110,    4275,   780,      1750625,     980,
  4 |  21,    343,  49,   62769,   351,    2401,   595,     38668105,    6039,
  5 |  77,  22143,  33,  791945,  6545,  199287,  1463,    453007181,  307307,
  6 | 117,  51883, 130,  573417, 13338,  518830, 13455,   2534531701,  757809,
  7 | 170, 110109,  68, 1778506,  9775,  660654, 15776,  11489232281, 1786190,
  8 | 114, 199633,  57, 2181162, 17632,  998165, 33573,  38126842081, 2283762,
  9 | 115, 460759,  92, 5122307, 67735, 7372144, 89355, 204995005981, 3311655,
etc.
		

Crossrefs

Cf. A341627 (denominators).

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341626sq(row,col) = A341526(A246278sq(row,col));
    A341626list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341626sq(col,(a-(col-1))))); (v); };
    v341626 = A341626list(up_to);
    A341626(n) = v341626[n];

Formula

A(n,k) = A341526(A246278(n,k)).
If we set r(row,col) = A341605(row,col)/A341606(row,col) and d(row,col) = A(row,col)/A341627(row,col), then d(row,col) = r(row+1,col)/r(row,col).
For all n, k, A(n,k) < A341627(n, k).