cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341627 Square array A(n,k) = A341527(A246278(n,k)), read by falling antidiagonals; denominators of the columnwise first quotients of A341605/A341606.

Original entry on oeis.org

9, 63, 10, 5, 325, 21, 81, 7, 1519, 22, 189, 1250, 11, 363, 78, 35, 220, 13377, 52, 22477, 119, 33, 455, 117, 66550, 34, 52887, 171, 2511, 260, 4774, 374, 804102, 133, 110827, 115, 325, 6875, 833, 2574, 6669, 584647, 69, 201549, 116, 1323, 3038, 1875181, 627, 205751, 13685, 1790199, 58, 465073, 465
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n =  1       2    3        4      5        6      7             8        9
  2n =  2       4    6        8     10       12     14            16       18
----+--------------------------------------------------------------------------
  1 |   9,     63,   5,      81,   189,      35,    33,         2511,     325,
  2 |  10,    325,   7,    1250,   220,     455,   260,         6875,    3038,
  3 |  21,   1519,  11,   13377,   117,    4774,   833,      1875181,    1089,
  4 |  22,    363,  52,   66550,   374,    2574,   627,     41009441,    6422,
  5 |  78,  22477,  34,  804102,  6669,  205751,  1495,    459974905,  317322,
  6 | 119,  52887, 133,  584647, 13685,  531981, 13804,   2584223261,  775789,
  7 | 171, 110827,  69, 1790199,  9918,  670795, 15903,  11564815861, 1813941,
  8 | 115, 201549,  58, 2202227, 17825, 1016508, 34040,  38495207801, 2325365,
  9 | 116, 465073,  93, 5170468, 68672, 7457205, 90364, 206922836641, 3348124,
etc.
		

Crossrefs

Cf. A341626 (numerators), A341628 (the greatest prime factor of these terms).

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341627sq(row,col) = A341527(A246278sq(row,col));
    A341627list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341627sq(col,(a-(col-1))))); (v); };
    v341627 = A341627list(up_to);
    A341627(n) = v341627[n];

Formula

A(n,k) = A341527(A246278(n,k)), where A341527(n) is the denominator of the ratio (n * sigma(A003961(n))) / (sigma(n) * A003961(n)), i.e., of A341528(n)/A341529(n).
For all n, k, A(n,k) > A341626(n, k).