A341645 Numbers without a strictly superior squarefree divisor.
1, 4, 8, 9, 16, 25, 27, 32, 36, 48, 49, 54, 64, 72, 81, 96, 100, 108, 121, 125, 128, 144, 160, 162, 169, 192, 196, 200, 216, 224, 225, 243, 250, 256, 288, 289, 320, 324, 343, 361, 375, 384, 392, 400, 405, 432, 441, 448, 484, 486, 500, 512, 529, 567, 576, 625
Offset: 1
Keywords
Examples
72 has strictly superior divisors {9,12,18,24,36,72} and squarefree divisors {1,2,3,6}, but the intersection is empty, so 72 is in the sequence.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
The version for prime instead of squarefree divisors is A048098.
The version for prime-power instead of squarefree divisors is A051283.
The weakly superior version is A059172.
The version for odd instead of squarefree divisors is A116882.
Positions of zeros in A341595.
The complement is A341646.
A005117 lists squarefree numbers.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A140271 selects the smallest strictly superior divisor.
A207375 list central divisors.
A341673 lists strictly superior divisors.
Programs
-
Mathematica
Select[Range[100],Function[n,Select[Divisors[n],SquareFreeQ[#]&>n/#&]=={}]]
-
PARI
isok(m) = my(d=divisors(m)); #select(x->(issquarefree(x) && (x^2>m)), d) == 0; \\ Michel Marcus, Feb 11 2024
Comments