cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341656 a(n) is the number of divisors of prime(n)^4 - 1.

Original entry on oeis.org

4, 10, 20, 36, 40, 80, 84, 60, 96, 80, 128, 120, 144, 240, 224, 160, 80, 80, 160, 144, 288, 112, 320, 288, 192, 120, 192, 240, 320, 224, 240, 160, 192, 160, 240, 288, 480, 200, 192, 320, 240, 240, 576, 288, 360, 216, 320, 256, 160, 320, 576, 560, 336, 720, 264
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 25 2021

Keywords

Comments

a(n) >= A309906(4) = 160 for n > 26.

Examples

			        p =                       factorization
   n  prime(n)  p^4 - 1             of p^4 - 1            a(n)
  --  -------- ---------  ------------------------------  ----
   1      2           15  3 * 5                              4
   2      3           80  2^4 * 5                           10
   3      5          624  2^4 * 3 * 13                      20
   4      7         2400  2^5 * 3 * 5^2                     36
   5     11        14640  2^4 * 3 * 5 * 61                  40
   6     13        28560  2^4 * 3 * 5 * 7 * 17              80
   7     17        83520  2^6 * 3^2 * 5 * 29                84
   8     19       130320  2^4 * 3^2 * 5 * 181               60
   9     23       279840  2^5 * 3 * 5 * 11 * 53             96
  10     29       707280  2^4 * 3 * 5 * 7 * 421             80
  11     31       923520  2^7 * 3 * 5 * 13 * 37            128
  12     37      1874160  2^4 * 3^2 * 5 * 19 * 137         120
  13     41      2825760  2^5 * 3 * 5 * 7 * 29^2           144
  14     43      3418800  2^4 * 3 * 5^2 * 7 * 11 * 37      240
  15     47      4879680  2^6 * 3 * 5 * 13 * 17 * 23       224
  16     53      7890480  2^4 * 3^3 * 5 * 13 * 281         160
  17     59     12117360  2^4 * 3 * 5 * 29 * 1741           80
  18     61     13845840  2^4 * 3 * 5 * 31 * 1861           80
  19     67     20151120  2^4 * 3 * 5 * 11 * 17 * 449      160
  20     71     25411680  2^5 * 3^2 * 5 * 7 * 2521         144
  21     73     28398240  2^5 * 3^2 * 5 * 13 * 37 * 41     288
  22     79     38950080  2^6 * 3 * 5 * 13 * 3121          112
  23     83     47458320  2^4 * 3 * 5 * 7 * 13 * 41 * 53   320
  24     89     62742240  2^5 * 3^2 * 5 * 11 * 17 * 233    288
  25     97     88529280  2^7 * 3 * 5 * 7^2 * 941          192
  26    101    104060400  2^4 * 3 * 5^2 * 17 * 5101        120
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^4 - 1]; Array[a, 50] (* Amiram Eldar, Feb 25 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^4-1); \\ Michel Marcus, Feb 25 2021
    
  • Python
    from sympy import prime, divisor_count
    def A341656(n): return divisor_count(prime(n)**4-1) # Chai Wah Wu, Feb 25 2021

Formula

a(n) = A000005(A000040(n)^4 - 1).