A341656 a(n) is the number of divisors of prime(n)^4 - 1.
4, 10, 20, 36, 40, 80, 84, 60, 96, 80, 128, 120, 144, 240, 224, 160, 80, 80, 160, 144, 288, 112, 320, 288, 192, 120, 192, 240, 320, 224, 240, 160, 192, 160, 240, 288, 480, 200, 192, 320, 240, 240, 576, 288, 360, 216, 320, 256, 160, 320, 576, 560, 336, 720, 264
Offset: 1
Keywords
Examples
p = factorization n prime(n) p^4 - 1 of p^4 - 1 a(n) -- -------- --------- ------------------------------ ---- 1 2 15 3 * 5 4 2 3 80 2^4 * 5 10 3 5 624 2^4 * 3 * 13 20 4 7 2400 2^5 * 3 * 5^2 36 5 11 14640 2^4 * 3 * 5 * 61 40 6 13 28560 2^4 * 3 * 5 * 7 * 17 80 7 17 83520 2^6 * 3^2 * 5 * 29 84 8 19 130320 2^4 * 3^2 * 5 * 181 60 9 23 279840 2^5 * 3 * 5 * 11 * 53 96 10 29 707280 2^4 * 3 * 5 * 7 * 421 80 11 31 923520 2^7 * 3 * 5 * 13 * 37 128 12 37 1874160 2^4 * 3^2 * 5 * 19 * 137 120 13 41 2825760 2^5 * 3 * 5 * 7 * 29^2 144 14 43 3418800 2^4 * 3 * 5^2 * 7 * 11 * 37 240 15 47 4879680 2^6 * 3 * 5 * 13 * 17 * 23 224 16 53 7890480 2^4 * 3^3 * 5 * 13 * 281 160 17 59 12117360 2^4 * 3 * 5 * 29 * 1741 80 18 61 13845840 2^4 * 3 * 5 * 31 * 1861 80 19 67 20151120 2^4 * 3 * 5 * 11 * 17 * 449 160 20 71 25411680 2^5 * 3^2 * 5 * 7 * 2521 144 21 73 28398240 2^5 * 3^2 * 5 * 13 * 37 * 41 288 22 79 38950080 2^6 * 3 * 5 * 13 * 3121 112 23 83 47458320 2^4 * 3 * 5 * 7 * 13 * 41 * 53 320 24 89 62742240 2^5 * 3^2 * 5 * 11 * 17 * 233 288 25 97 88529280 2^7 * 3 * 5 * 7^2 * 941 192 26 101 104060400 2^4 * 3 * 5^2 * 17 * 5101 120
Programs
-
Mathematica
a[n_] := DivisorSigma[0, Prime[n]^4 - 1]; Array[a, 50] (* Amiram Eldar, Feb 25 2021 *)
-
PARI
a(n) = numdiv(prime(n)^4-1); \\ Michel Marcus, Feb 25 2021
-
Python
from sympy import prime, divisor_count def A341656(n): return divisor_count(prime(n)**4-1) # Chai Wah Wu, Feb 25 2021
Comments