cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350780 Numbers that are the number of divisors of p^2 - 1 for some prime p.

Original entry on oeis.org

2, 4, 8, 10, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 70, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 182, 184, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228
Offset: 1

Views

Author

Jon E. Schoenfield, May 02 2022

Keywords

Comments

For all primes p > 73, tau(p^2 - 1) >= A309906(2) = 32.

Examples

			184 is a term: p = 111149057 is a prime, and p^2 - 1 = (p-1)*(p+1) = 2^22 * 3 * 53 * 18524843, which has 23*2*2*2 = 184 divisors.
190 is not a term: 190 = 2 * 5 * 19, so a number with 190 divisors must be of the form q^189, q^94 * r, q^37 * r^4, q^18 * r^9, or q^18 * r^4 * s, and for every prime p > 3, p^2 - 1 is a multiple of 24 = 2^3 * 3, so all the forms with 190 divisors are easily ruled out except for q^18 * r^4 * s. If p^2 - 1 = q^18 * r^4 * s, then it's one of the products 2^18 * 3^4 * s, 2^18 * r^4 * 3, 3^18 * 2^4 * s, or q^18 * 2^4 * 3. Each of these can be shown to be impossible by examining all possible ways of factoring the product into two even factors (p-1 and p+1) that differ by exactly two.
From _Jianing Song_, Feb 11 2025: (Start)
Let Omega = A001222, k be an even number and p be a prime.
 - Omega(k) <= 2. If odd p != 3, 7 (not necessarily prime) satisfies tau(p^2 - 1) = k = 2q for prime q, then p^2 - 1 = 2^(q-1)*P for some prime P, so (p-1,p+1) = (2^(q-2),2P) or (2P,2^(q-2)), which means that P = 2^(q-3) +- 1. Note that "-" is impossible since q-3 is even, so we have q = 2^r + 3, P = 2^2^r + 1, and p = 2^(2^r+1) + 1 for some r. In particular, p must be divisible by 3, so p cannot be prime.
 - Omega(k) = 3, or k = 16, 24, 36, or 54. Then tau(p^2 - 1) = k has finitely many solutions p == 1, 5 (mod 6) (not necessarily prime). See my first pdf link in the Links section for a proof. In fact, it seems that if we require p to be prime, then k <= 518, and the complete list of (k,p), Omega(k) = 3 is (k,p) = (8,5), (18,17), (20,23), (28,31), (30,73), (42,97), (70,2593), (182,1492993), and (518,4803028329503971873=32*3^36+1).
 - If k/2 has only prime factors congruent to 1 modulo 4, then tau(p^2 - 1) = k has no solutions for odd p. See my second pdf link in the Links section for a proof.
 - If k/2 has only prime factors congruent to 1 modulo 2*r for some odd r >= 3, then tau(p^2 - 1) = k for odd p implies that p is of the form p = 2^(2*r-1)*M^(2*r) + 1 for some M.
 - In general, if d(x) = k, then the largest exponent in the canonical factorization of x must be at least gpf(k)-1, where gpf = A006530 is the largest prime factor function. So if d(p^2 - 1) = k, then one of p-1 and p+1 must be divisible by M^(gpf(k)-1) for some odd prime M or by 2^(gpf(k)-2).
Conjecture: if Omega(k) >= 4, k != 16, 24, 36, or 54, and k/2 has a prime factor not congruent to 1 modulo 4, then tau(p^2 - 1) = k has infinitely many solutions. (End)
		

Crossrefs

Programs

A358881 a(n) is the smallest prime p such that p^2 - 1 has 2*n divisors, or -1 if no such prime exists.

Original entry on oeis.org

2, 3, -1, 5, 7, -1, -1, 11, 17, 23, -1, 19, -1, 31, 73, 29, -1, 383, -1, 41, 97, -1, -1, 79, -1, -1, 127, 223, -1, 71, -1, 109, -1, -1, 2593, 197, -1, -1, -1, 281, -1, 1439, -1, 34303, 199, -1, -1, 181, -1, 647, -1, 6143, -1, 7057, -1, 929, -1, -1, -1, 521, -1
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 04 2022

Keywords

Comments

See A350780 for a discussion about the prime solution to d(p^2 - 1) = 2*n for n in certain cases. - Jianing Song, Feb 15 2025

Examples

			For p = 11, p^2 - 1 = 121 - 1 = 120 = 2^3 * 3 * 5 has 16 divisors. 11 is the smallest prime p such that p^2 - 1 has 16 = 2*8 divisors, so a(8) = 11.
There does not exist any prime p such that p^2 - 1 has 6 = 2*3 divisors, so a(3) = -1.
		

Crossrefs

Programs

A358879 Primes p such that p^2 + 1 has more divisors than p^2 - 1.

Original entry on oeis.org

2917, 5443, 7187, 9133, 10357, 12227, 12967, 13043, 14243, 17047, 20507, 20743, 21767, 25657, 27893, 27997, 28163, 30307, 32323, 32443, 33493, 33623, 34157, 34367, 34897, 35537, 37783, 37957, 39827, 41387, 41893, 42793, 43633, 44357, 49109, 49993, 56597, 56857
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 04 2022

Keywords

Comments

Fewer than 1.2% of the first million primes have this property.
For all primes p > 3, p^2 - 1 is divisible by 24 (since it is factorable as (p-1)*(p+1)), but p^2 + 1, although it is even, is divisible by neither 4 nor 3.

Examples

			2917 is a term:
2917^2 - 1 = 8508888 = 2^3 * 3^6 * 1459 has 56 divisors, but
2917^2 + 1 = 8508890 = 2 * 5 * 13 * 29 * 37 * 61 has 64.
399173 is a term:
399173^2 - 1 = 159339083928 = 2^3 * 3 * 66529 * 99793 has 32 divisors, but
399173^2 + 1 = 159339083930 = 2 * 5 * 13 * 17 * 29 * 53 * 61 * 769 has 256.
		

Crossrefs

Showing 1-3 of 3 results.