A341671 Solutions y of the Diophantine equation 3*(x^2+x+1) = y^2.
3, 39, 543, 7563, 105339, 1467183, 20435223, 284625939, 3964327923, 55215964983, 769059181839, 10711612580763, 149193516948843, 2077997624703039, 28942773228893703, 403120827579808803, 5614748812888429539, 78203362552858204743, 1089232326927126436863, 15171049214426911911339
Offset: 1
Keywords
Examples
The first few values for (x,y) are (1,3), (22,39), (313,543), (4366,7563), (60817,105339), ...
Links
- Kustaa A. Inkeri, On the Diophantine equation a(x^n-1)/(x-1) = y^m, Acta Arithmetica, Vol. 21, No. 1 (1972), pp. 299-311.
Programs
-
Mathematica
f[x_] := Sqrt[3*(x^2 + x + 1)]; f /@ LinearRecurrence[{15, -15, 1}, {1, 22, 313}, 20] (* Amiram Eldar, Feb 17 2021 *)
Formula
a(n) = 3*A001570(n). - Hugo Pfoertner, Feb 17 2021
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
Extensions
More terms from Amiram Eldar, Feb 17 2021
Comments