A341675 Number of superior odd divisors of n.
1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 2, 1, 1, 2, 2, 0, 2, 1, 1, 1, 1, 1, 3, 0, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 0, 3, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 0, 1, 1, 3, 1, 1, 2, 1, 1, 4
Offset: 1
Keywords
Examples
The superior odd divisors of selected n: n = 1 9 45 105 225 315 945 1575 1890 2835 3465 8190 ----------------------------------------------------------- 1 9 45 105 225 315 945 1575 945 2835 3465 4095 3 15 35 75 105 315 525 315 945 1155 1365 9 21 45 63 189 315 189 567 693 819 15 25 45 135 225 135 405 495 585 15 35 105 175 105 315 385 455 21 63 105 63 189 315 315 45 75 45 135 231 273 35 63 105 165 195 45 81 105 117 63 99 105 77 91 63
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
The inferior version is A069288.
Positions of 0's (except a(1)) are A116882.
The version for prime instead of odd divisors is A341591.
The version for squarefree instead of odd divisors is A341592.
The version for prime-power instead of odd divisors is A341593.
The strictly superior case is A341594.
A005117 lists squarefree numbers.
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
Programs
-
Mathematica
Table[Length[Select[Divisors[n],OddQ[#]&>=n/#&]],{n,100}]
-
PARI
A341675(n) = sumdiv(n,d,(d%2)*(d>=n/d)); \\ Antti Karttunen, Dec 13 2021
Extensions
Data section extended up to 105 terms by Antti Karttunen, Dec 13 2021
Comments