cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341678 Irregular triangle read by rows: row n consists of all numbers x such that x^2 + y^2 = A006278(n), with 0 < x < y.

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 23, 2, 19, 46, 67, 74, 86, 109, 122, 64, 103, 167, 191, 236, 281, 292, 359, 449, 512, 568, 601, 607, 664, 673, 743, 59, 132, 531, 581, 627, 876, 1008, 1284, 1588, 1659, 1723, 2092, 2136, 2317, 2373, 2736, 2757, 2803, 3072, 3164, 3333, 3469, 3704, 3821, 4028, 4077, 4136, 4371, 4596, 4668, 4712, 4851
Offset: 1

Views

Author

Richard Peterson, Feb 17 2021

Keywords

Comments

The n-th row of the triangle is of length 2^(n-1), since a product of n distinct primes congruent to 1 (mod 4) has 2^(n-1) solutions to being the sum of two squares.

Examples

			Triangle starts:
1,
1, 4,
4, 9, 12, 23,
2, 19, 46, 67, 74, 86, 109, 122,
64, 103, 167, 191, 236, 281, 292, 359, 449, 512, 568, 601, 607, 664, 673, 743,
...
In the second row, calculations are as follows. 5*13 is the product of the first two primes congruent to 1 (mod 4), and 65 = 1^2 + 8^2 = 4^2 + 7^2, so the second row is 1, 4.
		

Crossrefs

Cf. A236381 (1st column).

Programs

  • PARI
    row(n) = {my(t=1, q=3, v=vector(2^n/2)); for(k=1, n, until(q%4==1, q=nextprime(q+1)); t*=q); q=0; for(k=1, #v, until(issquare(t-q^2), q++); v[k]=q); v; } \\ Jinyuan Wang, Mar 03 2021