A341683 Successive approximations up to 7^n for the 7-adic integer Sum_{k>=0} k!.
0, 6, 48, 97, 440, 14846, 31653, 31653, 1678739, 1678739, 122739560, 1535115805, 3512442548, 58877591352, 155766601759, 2190435820306, 30675804879964, 97141666019166, 97141666019166, 3353968861840064, 48949549603332636, 288326348496168639
Offset: 0
Keywords
Examples
For n = 7, since 7^7 divides 49!, we have a(7) = (Sum_{k=0..48} k!) mod 7^7 = 31653. For n = 55, since 7^55 divides 343!, we have a(55) = (Sum_{k=0..342} k!) mod 7^55 = 7563765912082524448071111141811678897409320968.
Links
- Jianing Song, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
PARI
a(n) = my(p=7); if(n==0, 0, lift(sum(k=0, (p-1)*(n+logint((p-1)*n, p)), Mod(k!, p^n))))
Formula
For n > 0, a(n) = (Sum_{k=0..m} k!) mod 7^n, where m = 6*(n + floor(log_7(6*n))).
Comments