A341746 If the runs in the binary expansion of n are (r_1, ..., r_k), then the runs in the binary expansion of a(n) are (r_1 + ... + r_k, r_1, ..., r_{k-1}).
1, 6, 3, 14, 29, 28, 7, 30, 123, 122, 61, 60, 121, 120, 15, 62, 503, 502, 251, 250, 501, 500, 125, 124, 499, 498, 249, 248, 497, 496, 31, 126, 2031, 2030, 1015, 1014, 2029, 2028, 507, 506, 2027, 2026, 1013, 1012, 2025, 2024, 253, 252, 2023, 2022, 1011, 1010
Offset: 1
Examples
The first terms, in decimal and in binary, are: n a(n) bin(n) bin(a(n)) -- ---- ------ --------- 1 1 1 1 2 6 10 110 3 3 11 11 4 14 100 1110 5 29 101 11101 6 28 110 11100 7 7 111 111 8 30 1000 11110 9 123 1001 1111011 10 122 1010 1111010 11 61 1011 111101 12 60 1100 111100 13 121 1101 1111001 14 120 1110 1111000 15 15 1111 1111
Links
Programs
-
PARI
toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r } fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v } a(n) = { my (r=toruns(n)); fromruns(concat(vecsum(r), r[1..#r-1])) }
Comments