cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341750 Numbers k such that gcd(k, sigma(k)) > log(log(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 34, 38, 40, 42, 44, 45, 46, 48, 51, 52, 54, 56, 58, 60, 62, 66, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 99, 102, 104, 105, 106, 108, 110, 112
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2021

Keywords

Comments

Pollack (2011) proved that the asymptotic density of numbers k such that gcd(k, sigma(k)) > (log(log(k)))^u for a real number u > 0 is equal to exp(-gamma) * Integral_{t=u..oo} rho(t) dt, where rho(t) is the Dickman-de Bruijn function and gamma is Euler's constant (A001620). For this sequence u = 1, and therefore its asymptotic density is 1 - exp(-gamma) = 0.43854... (A227242).
There are only 10 terms of A014567 in this sequence: 1, 2, 3, 4, 5, 7, 8, 9, 11, 13.

Examples

			15 is a term since gcd(15, sigma(15)) = gcd(15, 24) = 3 > log(log(15)) = 0.996...
16 is not a term since gcd(16, sigma(16)) = gcd(16, 31) = 1 < log(log(16)) = 1.0197...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], GCD[#, DivisorSigma[1, #]] > Log[Log[#]] &]
  • PARI
    isok(k) = (k==1) || (gcd(k, sigma(k)) > log(log(k))); \\ Michel Marcus, Feb 20 2021