A341763 Numbers whose trajectory under iteration of sum of cubes of digits (map) produce a narcissistic number greater than nine.
2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85
Offset: 1
Examples
For a(1) = 2: 2^3 = 8. 8^3 = 512. 5^3 + 1^3 + 2^3 = 134. 1^3 + 3^3 + 4^3 = 92. 9^3 + 2^3 = 737. 7^3 + 3^3 + 7^3 = 713. 7^3 + 1^3 + 3^3 = 371. 371 is a narcissistic number.
Links
- J. J. Camacho, Un Método Insospechado Para Encontrar Números Narcisistas (in Spanish)
Programs
-
Mathematica
(* A example with recurrence formula to test if the number belongs to this sequence *) f[1] = 2; f[n_] := Total[IntegerDigits[f[n - 1]]^3] Table[Total[IntegerDigits[f[n]]^3], {n, 1, 10}]
Comments