A091727 Norms of prime ideals of Z[sqrt(-5)].
2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 121, 127, 149, 163, 167, 169, 181, 223, 227, 229, 241, 263, 269, 281, 283, 289, 307, 347, 349, 361, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487
Offset: 1
Examples
From _Jianing Song_, Feb 20 2021: (Start) Let |I| be the norm of an ideal I, then: |(2, 1+sqrt(-5))| = 2; |(3, 2+sqrt(-5))| = |(3, 2-sqrt(-5))| = 3; |(sqrt(-5))| = 5; |(7, 1+3*sqrt(-5))| = |(7, 1-3*sqrt(-5))| = 7; |(23, 22+3*sqrt(-5))| = |(23, 22-3*sqrt(-5))| = 23; |(3 + 2*sqrt(-5))| = |(3 - 2*sqrt(-5))| = 29; |(6 + sqrt(-5))| = |(6 - sqrt(-5))| = 41. (End)
References
- David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
- A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A091728.
The number of distinct ideals with norm n is given by A035170.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), this sequence (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
Programs
-
PARI
isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n,&p)); if(!e || e>2, 0, bitxor(e-1,!!vecsearch(ms,p%20))); }; \\ Antti Karttunen, Feb 24 2020
Extensions
Offset corrected by Jianing Song, Feb 20 2021
Comments