A341829 Irregular triangle read by rows: the n-th row gives the x-values of the solutions of the equation x*(y - 1) + (2*x - y - 1)*(x mod 2) = 2*n for 0 < x <= y.
2, 2, 2, 2, 3, 2, 3, 2, 3, 4, 2, 3, 2, 3, 4, 2, 3, 2, 3, 4, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 5, 2, 3, 6, 2, 3, 4, 5, 2, 3, 2, 3, 4, 5, 6, 2, 3, 2, 3, 4, 5, 2, 3, 6, 2, 3, 4, 5, 2, 3, 2, 3, 4, 5, 6, 7, 2, 3, 2, 3, 4, 5, 2, 3, 6, 7, 2, 3, 4, 5, 8, 2, 3, 2, 3, 4, 5, 6, 7
Offset: 1
Examples
Triangle begins: 2 2 2 2 3 2 3 2 3 4 2 3 2 3 4 2 3 2 3 4 2 3 2 3 4 5 2 3 2 3 4 5 2 3 6 2 3 4 5 2 3 2 3 4 5 6 ...
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10175 (first 1500 rows of the triangle, flattened).
Programs
-
Mathematica
Table[Union[2Intersection[Divisors[n],Table[d,{d,Floor[(1+Sqrt[1+8n])/4]}]],2Intersection[Divisors[n],Table[d,{d,Floor[(Sqrt[1+2n]-1)/2]}]]+1],{n,30}]//Flatten
Comments