A341842 Coefficients of the series whose 12th power equals E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009.
1, 18, -2088, 301296, -50784174, 9174627360, -1734603719472, 338286925650240, -67486440186470016, 13697820033167444178, -2818359890320927630320, 586296297186462310481424, -123077156275866375661524864, 26034142700316716015964656544
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Wikipedia, Eisenstein series
Programs
-
Maple
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20): with(gfun): series((E(2,x)*E(4,x))^(1/12), x, 20): seriestolist(%);
Comments