cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341853 Number of triangulations of a fixed pentagon with n internal nodes.

Original entry on oeis.org

5, 21, 105, 595, 3675, 24150, 166257, 1186680, 8717940, 65572325, 502957455, 3922142574, 31021294850, 248377859100, 2010068042625, 16421073515280, 135277629836412, 1122788441510820, 9381874768828100, 78871575753345375, 666727830129370275
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Comments

These may be called rooted [n,2] triangulations.

Examples

			The a(0) = 5 triangulations correspond with the dissections of a pentagon by nonintersecting diagonals into 3 triangles. Although there is only one essentially different dissection, each rotation is counted separately here.
		

Crossrefs

Column k=2 of A146305.

Programs

  • Mathematica
    Array[210 Binomial[4 # + 5, #]/((3 # + 6)*(3 # + 7)) &, 21, 0] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    a(n) = {210*binomial(4*n+5, n)/((3*n+6)*(3*n+7))}

Formula

a(n) = 210*binomial(4*n+5, n)/((3*n+6)*(3*n+7)).
D-finite with recurrence 3*n*(3*n+5)*(3*n+7)*(n+2)*a(n) -8*(4*n+5)*(2*n+1)*(4*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024