cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341858 Numbers k such that psi(k^2) = k, psi = A002322; indices of 1 in A341857.

Original entry on oeis.org

1, 2, 4, 6, 12, 20, 42, 60, 84, 156, 220, 420, 660, 780, 1092, 1806, 1860, 2436, 3612, 3660, 4620, 5060, 5460, 8268, 8580, 12180, 12324, 13020, 15180, 18060, 20460, 24180, 24492, 25620, 29820, 31668, 40260, 41340, 44220, 46956, 47580, 57876, 60060, 61620, 86268, 88620
Offset: 1

Views

Author

Jianing Song, Feb 21 2021

Keywords

Comments

For all k we have k divides psi(k^2). This sequence gives those k such that the quotient is 1.
Apart from 5 exceptional terms, every term is the product of 4 and distinct odd primes. The exceptional terms are precisely the 5 terms in A014117.
Except for k = 1, 2, 6, 42, 1806, k is a term if and only if k = 4*(p_1)*(p_2)*...*(p_m), where p_1 < p_2 < ... < p_m are odd primes, (p_i)-1 | 4*(p_1)*(p_2)*...*(p_(i-1)) for all 1 <= i <= m.
The LCM of two terms is again in this sequence.
Is this sequence infinite? If this sequence is finite, it means that there exists a term of the form k = 4*(p_1)*(p_2)*...*(p_s), where p_1 < p_2 < ... < p_s are odd primes such that: for every (e_0, e_1, ..., e_s) in {0, 1}^(s+1), 2^((e_0)+1)*(p_1)^(e_1)*(p_2)^(e_2)*...*(p_s)^(e_s)+1 is either composite or equal to some p_i. That term must be divisible by all other terms, since there are no more odd primes q other than p_1, p_2, ..., p_s such that q-1 | k.
Numbers k such that b^k == 1 (mod k^2) for every b coprime to k. Proof: these are numbers k such that psi(k^2) divides k, which holds if and only if psi(k^2) = k. Subsequence of A124240 (see my comment there). If k is a term of the sequence and k+1 is prime, then k*(k+1) is also a term. - Thomas Ordowski, Jul 26 2024

Examples

			1092 = 4 * 3 * 7 * 13 is a term since 3-1 | 4, 7-1 | 4*3 and 13-1 | 4*3*7. Indeed, we have psi(1092^2) = 1092.
5060 = 4 * 5 * 11 * 23 is a term since 5-1 | 4, 11-1 | 4*5 and 23-1 | 4*5*11.
		

Crossrefs

A229289 gives the set of prime factors of the terms.
Subsequence of A124240.

Programs

  • Mathematica
    Select[Range[10^5], CarmichaelLambda[#^2] == # &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    isA341858(n) = (A002322(n^2)==n) \\ See A002322 for its program