cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341867 Square array read by downward antidiagonals: T(m,n) = Sum_{i=0..m, j=0..n} binomial(m,i)*binomial(n,j)*binomial(i+j,i).

Original entry on oeis.org

1, 2, 2, 4, 5, 4, 8, 12, 12, 8, 16, 28, 33, 28, 16, 32, 64, 86, 86, 64, 32, 64, 144, 216, 245, 216, 144, 64, 128, 320, 528, 664, 664, 528, 320, 128, 256, 704, 1264, 1736, 1921, 1736, 1264, 704, 256, 512, 1536, 2976, 4416, 5322, 5322, 4416, 2976, 1536, 512
Offset: 0

Views

Author

Jianing Song, Nov 07 2021

Keywords

Comments

T(m,n) is the coefficient of x^m*y^n of 1/(1 - 2*x - 2*y + 3*x*y).
In general, define T_{s,t}(m,n) = Sum_{i=0..m, j=0..n} binomial(m,i)*binomial(n,j)*binomial(i+j,i)*s^i*t^j, then T_{s,t}(m,n) is the coefficient of x^m*y^n of 1/(1 - (1+s)*x - (1+t)*y + (1+s+t)*x*y).
T(m,n) is the coefficient of x^n of (2 - 3*x)^m/(1 - 2*x)^(m+1). In general, T_{s,t}(m,n) is the coefficient of x^n of ((1+t) - (1+s+t)*x)^m/(1 - (1+s)*x)^(m+1).
T(m,n) is odd if and only if m = n. Proof: T(m,n) == T_{-1,-1}(m,n) (mod 2). The RHS is the coefficient of x^m*y^n of 1/(1 - x*y), which is 1 if m = n and 0 otherwise.
This is the table of cardinalities of bubble posets and shuffle posets, see McConville and Mühle reference. - F. Chapoton, Sep 11 2024

Examples

			Rows 0-7:
    1,   2,    4,     8,    16,     32,     64,     128, ...
    2,   5,   12,    28,    64,    144,    320,     704, ...
    4,  12,   33,    86,   216,    528,   1264,    2976, ...
    8,  28,   86,   245,   664,   1736,   4416,   10992, ...
   16,  64,  216,   664,  1921,   5322,  14268,   37272, ...
   32, 144,  528,  1736,  5322,  15525,  43620,  118980, ...
   64, 320, 1264,  4416, 14268,  43620, 127905,  362910, ...
  128, 704, 2976, 10992, 37272, 118980, 362910, 1067925, ...
  ...
		

Crossrefs

Cf. A000079 (0th row), A045623(n+1) (1st row), A343561 (2nd row), A084771 (main diagonal).

Programs

  • Mathematica
    T[m_, n_] := Sum[Binomial[m, i] * Binomial[n, j] * Binomial[i + j, i], {i, 0, m}, {j, 0, n} ]; Table[T[m, n - m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Nov 08 2021 *)
    T[m_, n_] := Sum[Binomial[n, j] Hypergeometric2F1[j + 1, -m, 1, -1], {j, 0, n}];
    (* Peter Luschny, Nov 08 2021 *)
  • PARI
    T(m,n) = sum(i=0, m, sum(j=0, n, binomial(m,i)*binomial(n,j)*binomial(i+j,i)))

Formula

T(0,n) = Sum_{k=0..n} binomial(n,k) = 2^n;
T(1,n) = Sum_{k=0..n} binomial(n,k) * (k+2) = (n+4)*2^(n-1);
T(2,n) = Sum_{k=0..n} binomial(n,k) * (k^2+7*k+8)/2 = (n^2+15*n+32)*2^(n-3);
T(3,n) = Sum_{k=0..n} binomial(n,k) * (k^3+15*k^2+56*k+48)/6 = (n^3+33*n^2+254*n+384)*2^(n-4)/3.
E.g.f.: Sum_{m,n>=0} T(m,n)*x^m*y^n/(m!*n!) = exp(2*x+2*y) * BesselI(0,2*sqrt(x*y)). In general, Sum_{m,n>=0} T_{s,t}(m,n)*x^m*y^n/(m!*n!) = exp((1+s)*x+(1+t)*y) * BesselI(0,2*sqrt(s*t*x*y)). Note that BesselI(0,2*sqrt(x)) = Sum_{k>=0} x^k/(k!)^2.
E.g.f. for m-th row: Sum_{n>=0} T(m,n)*x^n/n! = exp(2*x) * Sum_{k=0..m} (binomial(m,k)*2^(m-k)/k!) * x^k. In general, Sum_{n>=0} T_{s,t}(m,n)*x^n/n! = exp((1+s)*x) * Sum_{k=0..m} (binomial(m,k)*(1+t)^(m-k)/k!) * (s*t*x)^k.
Define P_n(x) = exp(-x) * d^n/dx^n (x^n*exp(x)), then Sum_{n>=0} T_{s,t}(m,n)*x^n/n! = exp((1+s)*x) * ((1+t)^m/m!) * P_m(s*t*x/(1+t)) if t != -1 and Sum_{n>=0} T_{s,t}(m,n)*x^n/n! = exp((1+s)*x) * (s*t*x)^m/m! if t = -1.
T(m, n) = Sum_{j=0..n} binomial(n, j)*hypergeom([j + 1, -m], [1], -1). - Peter Luschny, Nov 08 2021