A341879 a(n) is the largest d(k) such that sigma(k) = n, where d is the number of divisor function and sigma is the sum of divisors function.
1, 0, 2, 2, 0, 2, 3, 2, 0, 0, 0, 4, 3, 2, 4, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, 0, 2, 5, 4, 0, 0, 0, 4, 0, 2, 6, 4, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 6, 3, 0, 0, 8, 0, 2, 6, 0, 0, 0, 0, 2, 0, 0, 0, 8, 0, 2, 0, 0, 0, 6, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 8, 9, 0, 6, 0, 0, 8, 0, 6, 0, 0, 0, 2, 0, 6, 0
Offset: 1
Examples
k that satisfies sigma(k) = 12 is 6 or 11. d(6) = 4 and d(11) = 2. So a(12) = 4.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{dmax = 0}, Do[If[DivisorSigma[1, k] == n && (d = DivisorSigma[0, k]) > dmax, dmax = d], {k, 1, n}]; dmax]; Array[a, 100] (* Amiram Eldar, Apr 28 2021 *)
-
PARI
a(n) = my(m=0); for(k=1, n, if(sigma(k)==n, m=max(m, numdiv(k)))); m;