A341885 a(n) is the sum of A000217(p) over the prime factors p of n, counted with multiplicity.
0, 3, 6, 6, 15, 9, 28, 9, 12, 18, 66, 12, 91, 31, 21, 12, 153, 15, 190, 21, 34, 69, 276, 15, 30, 94, 18, 34, 435, 24, 496, 15, 72, 156, 43, 18, 703, 193, 97, 24, 861, 37, 946, 72, 27, 279, 1128, 18, 56, 33, 159, 97, 1431, 21, 81, 37, 196, 438, 1770, 27, 1891, 499, 40, 18, 106, 75, 2278, 159, 282
Offset: 1
Examples
18 = 2*3*3 so a(18) = 2*3/2 + 3*4/2 + 3*4/2 = 15.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local t; add(t[1]*(t[1]+1)/2*t[2], t = ifactors(n)[2]) end proc: map(f, [$1..100]);
-
Mathematica
Prepend[Array[Total@ PolygonalNumber@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &, 68, 2], 0] (* Michael De Vlieger, Feb 22 2021 *)
-
PARI
a(n) = my(f=factor(n), p); sum(k=1, #f~, p=f[k,1]; f[k,2]*p*(p+1)/2); \\ Michel Marcus, Aug 14 2022
-
Python
from sympy import factorint def A341885(n): return sum(k*m*(m+1)//2 for m,k in factorint(n).items()) # Chai Wah Wu, Feb 25 2021
Comments