A341923 Array read by antidiagonals: T(n,k) is the number of 3-connected triangulations of a disk up to orientation-preserving isomorphisms with n interior nodes and k nodes on the boundary, n >= 1, k >= 3.
1, 1, 1, 1, 2, 5, 1, 2, 10, 24, 1, 3, 16, 60, 133, 1, 3, 28, 122, 386, 846, 1, 4, 39, 242, 925, 2652, 5661, 1, 4, 58, 419, 2039, 7066, 18914, 39556, 1, 5, 78, 711, 4101, 17138, 54560, 139264, 286000, 1, 5, 106, 1128, 7801, 38166, 142802, 426462, 1048947, 2123329
Offset: 1
Examples
Array begins: ===================================================== n\k | 3 4 5 6 7 8 ----+------------------------------------------------ 1 | 1 1 1 1 1 1 ... 2 | 1 2 2 3 3 4 ... 3 | 5 10 16 28 39 58 ... 4 | 24 60 122 242 419 711 ... 5 | 133 386 925 2039 4101 7801 ... 6 | 846 2652 7066 17138 38166 79908 ... 7 | 5661 18914 54560 142802 345099 782210 ... 8 | 39556 139264 426462 1188412 3067938 7433635 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- G. Brinkmann and B. McKay, Plantri (program for generation of certain types of planar graph)
Comments