A343008 a(n) = F(n+5) * F(n+2) - 12 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
28, 27, 117, 260, 727, 1857, 4908, 12803, 33565, 87828, 229983, 602057, 1576252, 4126635, 10803717, 28284452, 74049703, 193864593, 507544140, 1328767763, 3478759213, 9107509812, 23843770287, 62423800985, 163427632732, 427859097147, 1120149658773
Offset: 1
Keywords
Examples
For n = 2, a(2) = F(2+5) * F(2+2) - 12 * (-1)^2 = 13 * 3 - 12 = 27.
References
- B. Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 52.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Mathematica
a[n_]:=Fibonacci[n+5]*Fibonacci[n+2]-12(-1)^n Array[a,30] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
Formula
a(n) = F(n+5) * F(n+2) - 12 * (-1)^n.
G.f.: x*(28 - 29*x + 7*x^2)/(1 - 2*x - 2*x^2 + x^3).
Comments