cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Burak Muslu

Burak Muslu's wiki page.

Burak Muslu has authored 8 sequences.

A348569 a(n) = (prime(n) + prime(n+2))^2 + prime(n+1)^2.

Original entry on oeis.org

58, 125, 305, 521, 953, 1313, 1961, 2833, 3757, 5317, 6553, 8081, 9593, 11425, 14045, 16477, 19597, 21913, 24641, 27829, 30577, 35113, 40321, 45509, 50201, 53873, 56393, 60281, 68465, 75665, 86857, 91669, 101117, 106301
Offset: 1

Author

Burak Muslu, Oct 23 2021

Keywords

Comments

The square of the shortest distance between the start and end points of the path followed by a person moving 90 degrees left and right (or left and right) at the end of each path on a path of three consecutive prime numbers.

Examples

			For n = 1 the a(1) = (prime(1) + prime(3))^2 + prime(2)^2 = (2 + 5)^2 + 3^2 = 49 + 9 = 58.
		

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n] + Prime[n + 2])^2 + Prime[n + 1]^2,{n,34}]

Formula

a(n) = prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + 2*prime(n)*prime(n+2).

A347702 Prime numbers that give a remainder of 1 when divided by the sum of their digits.

Original entry on oeis.org

11, 13, 17, 41, 43, 97, 101, 131, 157, 181, 233, 239, 271, 311, 353, 401, 421, 491, 521, 541, 599, 617, 631, 647, 673, 743, 811, 859, 953, 1021, 1031, 1051, 1093, 1171, 1201, 1249, 1259, 1301, 1303, 1327, 1373, 1531, 1601, 1621, 1801, 1871, 2029, 2111, 2129, 2161
Offset: 1

Author

Burak Muslu, Sep 10 2021

Keywords

Examples

			97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1.
		

Crossrefs

Subsequence of A209871.
A259866 \ {31}, and the primes associated with A056804 \ {1, 2} and A056797 are subsequences.

Programs

  • Maple
    select(t -> isprime(t) and t mod convert(convert(t,base,10),`+`) = 1, [seq(i,i=3..10000,2)]); # Robert Israel, Mar 05 2024
  • Mathematica
    Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* Amiram Eldar, Sep 10 2021 *)
  • PARI
    isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ Michel Marcus, Sep 10 2021
  • Python
    from sympy import primerange
    def ok(p): return p%sum(map(int, str(p))) == 1
    print(list(filter(ok, primerange(1, 2130)))) # Michael S. Branicky, Sep 10 2021
    

A347530 Primes of the form (p^2 + 9)/2 where p is prime.

Original entry on oeis.org

17, 29, 89, 149, 269, 929, 1109, 1409, 3449, 5309, 6389, 8069, 12329, 14969, 33029, 34589, 42929, 47129, 48989, 60209, 67349, 78809, 98129, 109049, 118589, 136769, 158489, 175829, 213209, 264269, 317609, 338669, 363809, 367229, 389849, 438989, 454109, 467549
Offset: 1

Author

Burak Muslu, Sep 05 2021

Keywords

Comments

Each p is an odd number, so p^2 == 1 (mod 8), thus (p^2 + 9)/2 == 1 (mod 4).

Examples

			17 is in the sequence as 17 = (p^2 + 9)/2 where p = 5 is prime.
29 is in the sequence as 29 = (p^2 + 9)/2 where p = 7 is prime.
		

Crossrefs

Subsequence of A076727 and of A103739.

Programs

  • Mathematica
    Select[(Select[Range[3, 1000], PrimeQ]^2 + 9)/2, PrimeQ] (* Amiram Eldar, Sep 05 2021 *)

A343008 a(n) = F(n+5) * F(n+2) - 12 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.

Original entry on oeis.org

28, 27, 117, 260, 727, 1857, 4908, 12803, 33565, 87828, 229983, 602057, 1576252, 4126635, 10803717, 28284452, 74049703, 193864593, 507544140, 1328767763, 3478759213, 9107509812, 23843770287, 62423800985, 163427632732, 427859097147, 1120149658773
Offset: 1

Author

Burak Muslu, Apr 02 2021

Keywords

Comments

First differences of A341928.
Second differences of A341208.
Third differences of A338225.
Fourth differences of A226205.
Fourth differences between the areas of consecutive rectangles with side lengths F(n+3) and F(n).
Twice the fourth differences between the areas of consecutive deltoids with cross lengths F(n+3) and F(n).
Twice the fourth differences between the areas of consecutive triangles with the height and base length are F(n+3) and F(n).

Examples

			For n = 2, a(2) = F(2+5) * F(2+2) - 12 * (-1)^2 = 13 * 3 - 12 = 27.
		

References

  • B. Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 52.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Fibonacci[n+5]*Fibonacci[n+2]-12(-1)^n
    Array[a,30] (* Giorgos Kalogeropoulos, Apr 02 2021 *)

Formula

a(n) = F(n+5) * F(n+2) - 12 * (-1)^n.
G.f.: x*(28 - 29*x + 7*x^2)/(1 - 2*x - 2*x^2 + x^3).

A341928 a(n) = F(n+4) * F(n+2) + 7 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.

Original entry on oeis.org

3, 31, 58, 175, 435, 1162, 3019, 7927, 20730, 54295, 142123, 372106, 974163, 2550415, 6677050, 17480767, 45765219, 119814922, 313679515, 821223655, 2149991418, 5628750631, 14736260443, 38580030730, 101003831715, 264431464447, 692290561594, 1812440220367
Offset: 1

Author

Burak Muslu, Feb 23 2021

Keywords

Comments

First differences of A341208.
Second differences of A338225.
Third differences of A226205 n > 2.
Third differences between the areas of consecutive rectangles with side lengths F(n+3) and F(n).
Twice the third differences between the areas of consecutive deltoids with cross lengths F(n+3) and F(n).
Twice the third differences between the areas of consecutive triangles with the height and base length are F(n+3) and F(n).

Examples

			For n = 2, a(2) = F(2+4) * F(2+2) + 7 * (-1)^2 = 8 * 3 + 7 = 31.
		

References

  • Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51 (in Turkish).

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[n + 4] * Fibonacci[n + 2] + 7 * (-1)^n, {n, 1, 28}] (* Amiram Eldar, Feb 23 2021 *)
  • PARI
    a(n) = fibonacci(n+4)*fibonacci(n+2) + 7*(-1)^n; \\ Michel Marcus, Feb 23 2021

Formula

a(n) = F(n+4) * F(n+2) + 7 * (-1)^n.
G.f.: x*(3 + 25*x - 10*x^2)/(1 - 2*x - 2*x^2 + x^3).

A338225 a(n) = F(n+3) * F(n+1) + (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.

Original entry on oeis.org

2, 11, 23, 66, 167, 443, 1154, 3027, 7919, 20738, 54287, 142131, 372098, 974171, 2550407, 6677058, 17480759, 45765227, 119814914, 313679523, 821223647, 2149991426, 5628750623, 14736260451, 38580030722, 101003831723, 264431464439, 692290561602, 1812440220359, 4745030099483
Offset: 1

Author

Burak Muslu, Jan 30 2021

Keywords

Comments

Twice the difference between the areas of consecutive deltoids with cross lengths F(n+3) and F(n).
Also it is the difference between the areas of consecutive rectangles with side lengths F(n+3) and F(n).
Also first differences of A226205 for n > 2.

Examples

			For n = 2, a(2) = F(2+3) * F(2+1) + (-1)^2 = 5 * 2 + 1 = 11.
		

References

  • Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 50.

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n + 3] * Fibonacci[n + 1] + (-1)^n; Array[a, 30] (* Amiram Eldar, Jan 30 2021 *)
  • PARI
    a(n) = fibonacci(n+3)*fibonacci(n+1) + (-1)^n; \\ Michel Marcus, Mar 25 2021

Formula

a(n) = F(n+3) * F(n+1) + (-1)^n, for n > 0.
G.f.: x*(2 + 7*x - 3*x^2)/(1 - 2*x - 2*x^2 + x^3). - Stefano Spezia, Jan 30 2021
a(n) = F(n+2)^2 + 2*(-1)^n = A007598(n+2) + 2*(-1)^n. - Amiram Eldar, Jan 11 2022

A341208 a(n) = F(n+4) * F(n+1) - 4 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.

Original entry on oeis.org

9, 12, 43, 101, 276, 711, 1873, 4892, 12819, 33549, 87844, 229967, 602073, 1576236, 4126651, 10803701, 28284468, 74049687, 193864609, 507544124, 1328767779, 3478759197, 9107509828, 23843770271, 62423801001, 163427632716, 427859097163, 1120149658757
Offset: 1

Author

Burak Muslu, Feb 06 2021

Keywords

Comments

First differences of A338225.
Also it is second differences between the areas of consecutive rectangles with side lengths F(n+3) and F(n).

Examples

			For n = 2, a(2) = F(2+4) * F(2+1) - 4 * (-1)^2 = 8 * 2 - 4 = 12.
		

References

  • Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51.

Crossrefs

Programs

  • PARI
    a(n) = fibonacci(n+4)*fibonacci(n+1) - 4*(-1)^n; \\ Michel Marcus, Feb 06 2021

Formula

a(n) = F(n+4) * F(n+1) - 4 * (-1)^n for n > 0.
G.f.: x*(9 - 6*x + x^2)/(1 - 2*x - 2*x^2 + x^3).

A337188 a(n) = determinant([a(n-1), a(n-2); a(n-4), a(n-3)]) for n >= 5, a(n) = n otherwise.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 13, 37, 194, 2263, 81209, 15670815, 35447299799, 2878604306322646, 45110072663945746399499, 1599030269628449375351280360624211, 4602975420092714513333476912306224941820648781605
Offset: 1

Author

Burak Muslu, Jan 29 2021

Keywords

References

  • B. Muslu, Sayılar ve Bağlantılar, Luna, 2021, pp. 18-22.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, n,
          a(n-1)*a(n-3)-a(n-2)*a(n-4))
        end:
    seq(a(n), n=1..18);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    a[n_] := a[n] = If[n < 5, n, Det @ Map[a, n - {{1, 2}, {4, 3}}, {2}]]; Array[a, 20] (* Amiram Eldar, Jan 29 2021 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,Det[{{d,c},{a,b}}]}; NestList[nxt,{1,2,3,4},20][[All,1]] (* Harvey P. Dale, Oct 23 2022 *)
  • PARI
    a(n) = if (n<=4, n, a(n-1)*a(n-3) - a(n-2)*a(n-4)); \\ Michel Marcus, Jan 29 2021

Formula

a(n) = a(n-1)*a(n-3) - a(n-2)*a(n-4) for n >= 5, a(n) = n for n <= 4.