A341208
a(n) = F(n+4) * F(n+1) - 4 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
Original entry on oeis.org
9, 12, 43, 101, 276, 711, 1873, 4892, 12819, 33549, 87844, 229967, 602073, 1576236, 4126651, 10803701, 28284468, 74049687, 193864609, 507544124, 1328767779, 3478759197, 9107509828, 23843770271, 62423801001, 163427632716, 427859097163, 1120149658757
Offset: 1
For n = 2, a(2) = F(2+4) * F(2+1) - 4 * (-1)^2 = 8 * 2 - 4 = 12.
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51.
A341928
a(n) = F(n+4) * F(n+2) + 7 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
Original entry on oeis.org
3, 31, 58, 175, 435, 1162, 3019, 7927, 20730, 54295, 142123, 372106, 974163, 2550415, 6677050, 17480767, 45765219, 119814922, 313679515, 821223655, 2149991418, 5628750631, 14736260443, 38580030730, 101003831715, 264431464447, 692290561594, 1812440220367
Offset: 1
For n = 2, a(2) = F(2+4) * F(2+2) + 7 * (-1)^2 = 8 * 3 + 7 = 31.
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51 (in Turkish).
-
Table[Fibonacci[n + 4] * Fibonacci[n + 2] + 7 * (-1)^n, {n, 1, 28}] (* Amiram Eldar, Feb 23 2021 *)
-
a(n) = fibonacci(n+4)*fibonacci(n+2) + 7*(-1)^n; \\ Michel Marcus, Feb 23 2021
A343008
a(n) = F(n+5) * F(n+2) - 12 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
Original entry on oeis.org
28, 27, 117, 260, 727, 1857, 4908, 12803, 33565, 87828, 229983, 602057, 1576252, 4126635, 10803717, 28284452, 74049703, 193864593, 507544140, 1328767763, 3478759213, 9107509812, 23843770287, 62423800985, 163427632732, 427859097147, 1120149658773
Offset: 1
For n = 2, a(2) = F(2+5) * F(2+2) - 12 * (-1)^2 = 13 * 3 - 12 = 27.
- B. Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 52.
Showing 1-3 of 3 results.
Comments