A338225 a(n) = F(n+3) * F(n+1) + (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
2, 11, 23, 66, 167, 443, 1154, 3027, 7919, 20738, 54287, 142131, 372098, 974171, 2550407, 6677058, 17480759, 45765227, 119814914, 313679523, 821223647, 2149991426, 5628750623, 14736260451, 38580030722, 101003831723, 264431464439, 692290561602, 1812440220359, 4745030099483
Offset: 1
Examples
For n = 2, a(2) = F(2+3) * F(2+1) + (-1)^2 = 5 * 2 + 1 = 11.
References
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 50.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Mathematica
a[n_] := Fibonacci[n + 3] * Fibonacci[n + 1] + (-1)^n; Array[a, 30] (* Amiram Eldar, Jan 30 2021 *)
-
PARI
a(n) = fibonacci(n+3)*fibonacci(n+1) + (-1)^n; \\ Michel Marcus, Mar 25 2021
Formula
a(n) = F(n+3) * F(n+1) + (-1)^n, for n > 0.
G.f.: x*(2 + 7*x - 3*x^2)/(1 - 2*x - 2*x^2 + x^3). - Stefano Spezia, Jan 30 2021
a(n) = F(n+2)^2 + 2*(-1)^n = A007598(n+2) + 2*(-1)^n. - Amiram Eldar, Jan 11 2022
Comments