A341938 Numbers m such that the geometric mean of tau(m) and phi(m) is an integer where phi is the Euler totient function (A000010) and tau is the number of divisors function (A000005).
1, 3, 8, 10, 18, 19, 24, 30, 34, 45, 52, 54, 57, 73, 74, 85, 102, 125, 135, 140, 152, 153, 156, 163, 182, 185, 190, 202, 219, 222, 252, 255, 333, 342, 360, 375, 394, 416, 420, 436, 451, 455, 456, 459, 476, 489, 505, 514, 546, 555, 570, 584, 606, 625, 629, 640, 646, 679, 680, 730
Offset: 1
Keywords
Examples
phi(18) = tau(18) = 6, so phi(18)*tau(18) = 6^2. phi(19) = 18, tau(19) = 2, so phi(19)*tau(19) = 36 = 6^2. phi(34) = 16, tau(34) = 4, so phi(34)*tau(34) = 16*4 = 64 = 8^2. phi(125) = 100, tau(125) = 4, so phi(125)*tau(125) = 400 = 20^2.
Crossrefs
Programs
-
Maple
with(numtheory): filter:= n -> issqr(phi(n)*tau(n)) : select(filter, [$1..750]);
-
Mathematica
Select[Range[1000], IntegerQ @ GeometricMean[{DivisorSigma[0, #], EulerPhi[#]}] &] (* Amiram Eldar, Feb 24 2021 *)
-
PARI
isok(m) = issquare(numdiv(m)*eulerphi(m)); \\ Michel Marcus, Feb 24 2021
Comments