A341939 Numbers m such that phi(m)/tau(m) is a square of an integer where phi is the Euler totient function (A000010) and tau is the number of divisors function (A000005).
1, 3, 8, 10, 18, 19, 24, 30, 34, 45, 52, 57, 73, 74, 85, 102, 125, 135, 140, 152, 153, 156, 163, 182, 185, 190, 202, 219, 222, 252, 255, 333, 342, 360, 375, 394, 416, 420, 436, 451, 455, 456, 459, 476, 489, 505, 514, 546, 555, 570, 584, 606, 625, 629, 640, 646, 679, 680, 730
Offset: 1
Keywords
Examples
phi(30) = 8, tau(30) = 8 so phi(30)/tau(30) = 1^2, and 30 is a term. phi(45) = 24, tau(45) = 6, so phi(45)/tau(45) = 4 = 2^2, and 85 is a term. phi(125) = 100, tau(125) = 4, so phi(125)/tau(125) = 25 = 5^2, and 125 is a term. phi(54) = 18, tau(54) = 8, and phi(54)/tau(54) = 18/8 = 9/4 = (3/2)^2 and 54 is not a term while phi(54)*tau(54) = 12^2.
Crossrefs
Programs
-
Maple
with(numtheory): filter:= q -> phi(q)/tau(q) = floor(phi(q)/tau(q)) and issqr(phi(q)/tau(q)) : select(filter, [$1..750]);
-
Mathematica
Select[Range[1000], IntegerQ @ Sqrt[EulerPhi[#]/DivisorSigma[0, #]] &] (* Amiram Eldar, Feb 24 2021 *)
-
PARI
isok(m) = my(x=eulerphi(m)/numdiv(m)); (denominator(x)==1) && issquare(x); \\ Michel Marcus, Feb 24 2021
Comments