A341940 Numbers m such that phi(m)*tau(m) is a square but phi(m)/tau(m) is not the square of an integer.
54, 1026, 1280, 2187, 2304, 3840, 4352, 6750, 8802, 9072, 9900, 12500, 13056, 13718, 17496, 18700, 21870, 25856, 36900, 37500, 41154, 41553, 47682, 50432, 56100, 57078, 65792, 69700, 77568, 78786, 79200, 84240, 100000, 102656, 103586, 111100, 117666, 125712
Offset: 1
Keywords
Examples
phi(54) = 18, tau(54) = 8, phi(54)*tau(54) = 18*8 = 144 = 12^2 but phi(54)/tau(54) = 9/4 = (3/2)^2 is not the square of an integer, hence 54 is a term. phi(1026) = 324, tau(1026) = 16, phi(1026)*tau(1026) = 324*16 = 5184 = 72^2 but phi(1026)/tau(1026) = 324/16 = 81/4 = (9/2)^2 is not the square of an integer, hence 1026 is another term.
Crossrefs
Programs
-
Maple
with(numtheory): filter:= r -> phi(r)/tau(r) <> floor(phi(r)/tau(r)) and issqr(phi(r)*tau(r)) : select(filter, [$1..50000]);
-
Mathematica
Select[Range[10^5], IntegerQ /@ Sqrt[{(e = EulerPhi[#])*(d = DivisorSigma[0, #]), e/d}] == {True, False} &] (* Amiram Eldar, Feb 24 2021 *)
-
PARI
isok(m) = my(x=eulerphi(m), y = numdiv(m)); issquare(x*y) && (denominator(x/y) != 1); \\ Michel Marcus, Feb 24 2021
Comments