A348668 Decimal expansion of the probability that a triangle formed by three points uniformly and independently chosen at random in a rectangle with dimensions 1 X 2 is obtuse.
7, 9, 8, 3, 7, 4, 2, 8, 5, 1, 2, 6, 9, 2, 1, 0, 6, 0, 3, 8, 5, 1, 0, 4, 7, 9, 4, 1, 8, 7, 3, 5, 8, 7, 5, 2, 2, 8, 6, 3, 1, 6, 5, 8, 3, 0, 2, 0, 5, 0, 9, 4, 1, 1, 0, 1, 8, 9, 2, 4, 4, 6, 9, 7, 0, 2, 8, 8, 4, 0, 5, 3, 9, 5, 2, 8, 3, 8, 7, 3, 1, 3, 8, 5, 4, 2, 8, 9, 5, 8, 3, 6, 8, 1, 6, 1, 4, 1, 5, 7, 2, 7, 1, 0, 2
Offset: 0
Examples
0.79837428512692106038510479418735875228631658302050...
References
- A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, pp. 250-253.
- Paul J. Nahin, Digital Dice: Computational Solutions to Practical Probability Problems, Princeton University Press, 2008, pp. 8-11.
- Luis A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, 1976, pp. 21-22.
- C. Stanley Ogilvy, Tomorrow's Math: Unsolved Problems for the Amateur, Oxford University Press, New York, 1962, p. 114.
Links
- Frank Hawthorne, Problem E1150, The American Mathematical Monthly, Vol. 62, No. 1 (1955), p. 40; Obtuse triangle within a rectangle, Solution to Problem E1150, ibid., Vol. 78, No. 4 (1971), p. 405.
- Eric Langford, The probability that a random triangle is obtuse, Biometrika, Vol. 56, No. 3 (1969), p. 689.
- Eric Langford, A problem in geometric probability, Mathematics Magazine, Vol 43, No. 5 (1970), pp. 237-244.
Programs
-
Mathematica
RealDigits[1199/1200 + 13*Pi/128 - 3*Log[2]/4, 10, 100][[1]]
-
PARI
1199/1200 + 13*Pi/128 - 3*log(2)/4 \\ Michel Marcus, Oct 29 2021
Formula
Equals 1199/1200 + 13*Pi/128 - 3*log(2)/4.
Comments