A341953 Replace each digit d in the decimal representation of n with the digital root of d^n.
1, 4, 9, 4, 2, 9, 7, 1, 9, 10, 11, 11, 19, 17, 18, 19, 14, 11, 19, 40, 81, 77, 59, 11, 25, 49, 81, 71, 59, 90, 91, 94, 99, 94, 92, 99, 97, 91, 99, 40, 71, 11, 49, 77, 18, 49, 74, 11, 49, 70, 81, 47, 29, 11, 55, 79, 81, 41, 29, 90, 91, 94, 99, 94, 92, 99, 97
Offset: 1
Examples
a(14) = 17, since 1^14 = 1 and 4^14 = 268435456. 2 + 6 + 8 + 4 + 3 + 5 + 4 + 5 + 6 = 43 and 4 + 3 = 7. Thus, the digital root of 268435456 is 7. This means that for 14, "1" gets replaced by "1" and "4" gets replaced by "7".
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Sebastian Karlsson, Generalized and plotted in arbitrary bases
Programs
-
Mathematica
digroot[n_] := If[n == 0, 0, Mod[n - 1, 9] + 1]; a[n_] := FromDigits[digroot /@ (IntegerDigits[n]^n)]; Array[a, 100] (* Amiram Eldar, Feb 24 2021 *)
-
PARI
r(n) = if(n, (n-1)%9+1) \\ A010888 a(n) = fromdigits(apply(x->r(x^n), digits(n))); \\ Michel Marcus, Mar 21 2021
-
Python
def D(d, n): return 0 if d == 0 else (pow(d, n, 9)-1)%9 + 1 def a(n): return int(''.join(str(D(int(d), n)) for d in str(n)))
Comments