A341969 Irregular triangle read by rows in which row n lists the sequence of widths, each contiguous sequence of identical widths w in A249223 replaced by a single entry of w, in the symmetric representation of sigma(n).
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1
Offset: 1
Examples
The irregular triangle for A279387 and this sequence: row A279387 A341969 1 1 1 2 1 1 3 2 1 0 1 4 1 1 5 2 1 0 1 6 1 1 1 2 1 7 2 1 0 1 8 1 1 9 3 1 0 1 0 1 10 2 1 0 1 11 2 1 0 1 12 1 1 1 2 1 13 2 1 0 1 14 2 1 0 1 15 3 1 1 0 1 2 1 0 1 16 1 1 17 2 1 0 1 18 1 2 1 2 1 2 1 19 2 1 0 1 20 1 1 1 2 1 21 4 1 0 1 0 1 0 1 .. .. .. 30 1 3 1 2 1 2 1 2 1 .. .. .. 45 3 3 1 0 1 2 1 2 1 2 1 0 1 .. .. .. a(17)..a(21) = { 1, 0, 1, 0, 1 } is row 9; the symmetric representation of sigma(9) consists of 3 parts of width 1 - see A247687. a(37)..a(43) = { 1, 0, 1, 2, 1, 0, 1} is row 15; the symmetric representation of sigma(15) consists of 2 outer parts of width 1 and a central part of width 2 only at the diagonal - see A338488. a(59)..a(65) = { 1, 0, 1, 0, 1, 0, 1 } is row 21; the symmetric representation of sigma(21) consists of 4 parts of width 1, and 21 is the smallest such number - see A264102. a(234)..a(240) = { 1, 2, 3, 2, 3, 2, 1 } is row 60; the symmetric representation of sigma(60) consists of 1 part of maximum width 3 which occurs in two subparts, and 60 is the smallest number with width 3 - see A250070.
Crossrefs
Programs
-
Mathematica
(* function widthL[ ] is defined in A341971 *) a341969[n_] := Module[{wL=widthL[n]}, Join[wL, Rest[Reverse[wL]]]] Flatten[Table[a341969[n], {n, 28}]] (* the first 28 rows of the table *)
Comments