A342002 Čiurlionis sequence: Arithmetic derivative without its inherited divisor applied to the primorial base exp-function: a(n) = A342001(A276086(n)).
0, 1, 1, 5, 2, 7, 1, 7, 8, 31, 13, 41, 2, 9, 11, 37, 16, 47, 3, 11, 14, 43, 19, 53, 4, 13, 17, 49, 22, 59, 1, 9, 10, 41, 17, 55, 12, 59, 71, 247, 106, 317, 19, 73, 92, 289, 127, 359, 26, 87, 113, 331, 148, 401, 33, 101, 134, 373, 169, 443, 2, 11, 13, 47, 20, 61, 17, 69, 86, 277, 121, 347, 24, 83, 107, 319, 142, 389, 31
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..11550
- Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
- Wikimedia, Čiurlionis: Piramidziu sonata, Allegro (a medium resolution scan of the painting "Pyramid Sonata, Allegro")
- Wikipedia, Mikalojus Konstantinas Čiurlionis
- Index entries for sequences related to primorial base
Crossrefs
Cf. A002110 (positions of 1's), A003415, A003557, A083345, A085731, A276086, A289234, A327860, A328571, A328572, A342001, A342005, A342006, A342016, A342022 (rgs-transform), A342417, A342419.
Cf. A342463 [= a(A329886(n))], A342920 [= a(A108951(n))], A342921 [= a(A276156(n))], A342017 [= A342007(a(n))], A342019 [= A129251(a(n))].
Cf. A344760, A344761, A344762, A346252, A346253 and A345930, A353572, A353574 for permuted and other variants.
Cf. A351952 (similar definition, but using factorial base, with quite a different look).
Programs
-
PARI
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A342002(n) = A342001(A276086(n)); \\ Uses also code from A342001.
-
PARI
A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ Antti Karttunen, Mar 12 2021
-
PARI
A342002(n) = { my(s=0, p=2, e); while(n, e = (n%p); s += (e/p); n = n\p; p = nextprime(1+p)); numerator(s); }; \\ (Taking denominator instead would give A328571) - Antti Karttunen, Mar 12 2021
Formula
From Antti Karttunen, Jul 18 2021: (Start)
There are several permutations of this sequence. The following formulas show the relations:
(End)
Extensions
Sequence renamed as "Čiurlionis sequence" to honor Lithuanian artist Mikalojus Čiurlionis - Antti Karttunen, Apr 30 2022
Comments