A342006 Numbers k where the maximal prime exponent in the arithmetic derivative of A276086(k) attains the maximal exponent in A276086(k), where A276086 gives the prime product form of primorial base expansion of its argument.
3, 7, 8, 9, 13, 16, 31, 32, 33, 36, 37, 38, 39, 44, 45, 64, 70, 72, 80, 92, 100, 144, 156, 211, 212, 213, 214, 216, 217, 218, 219, 222, 224, 232, 240, 241, 242, 243, 244, 246, 247, 248, 249, 252, 253, 271, 272, 280, 287, 288, 296, 300, 303, 308, 316, 348, 388, 424, 432, 440, 448, 450, 452, 460, 462, 480, 488, 493, 496
Offset: 1
Examples
16 is present as A276086(16) = 225, A003415(225) = 240 = 2^4 * 3 * 5, with maximum exponent = 4 >= the maximal exponent 4 in 16 = 2^4.
Links
Crossrefs
Programs
-
PARI
A328114(n) = { my(s=0, p=2); while(n, s = max(s,(n%p)); n = n\p; p = nextprime(1+p)); (s); }; A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; A328391(n) = A051903(A327860(n)); isA342006(n) = (A328391(n) >= A328114(n));
-
PARI
isA342006(n) = (0==A342005(n));
Comments