A342083 Number of chains of strictly inferior divisors from n to 1.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 4, 2, 2, 1, 7, 1, 2, 3, 3, 2, 5, 1, 3, 2, 4, 1, 8, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 7, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) chains for n = 2, 6, 12, 24, 42, 48, 60, 72: 2/1 6/1 12/1 24/1 42/1 48/1 60/1 72/1 6/2/1 12/2/1 24/2/1 42/2/1 48/2/1 60/2/1 72/2/1 12/3/1 24/3/1 42/3/1 48/3/1 60/3/1 72/3/1 24/4/1 42/6/1 48/4/1 60/4/1 72/4/1 42/6/2/1 48/6/1 60/5/1 72/6/1 48/6/2/1 60/6/1 72/8/1 60/6/2/1 72/6/2/1 72/8/2/1 The a(n) factorizations for n = 2, 6, 12, 24, 42, 48, 60, 72: 2 6 12 24 42 48 60 72 2*3 2*6 3*8 6*7 6*8 2*30 8*9 3*4 4*6 2*21 2*24 3*20 2*36 2*12 3*14 3*16 4*15 3*24 2*3*7 4*12 5*12 4*18 2*3*8 6*10 6*12 2*3*10 2*4*9 2*3*12
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
The restriction to powers of 2 is A040039.
Not requiring strict inferiority gives A074206 (ordered factorizations).
The weakly inferior version is A337135.
The strictly superior version is A342084.
The weakly superior version is A342085.
A000005 counts divisors.
A001055 counts factorizations.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
A342086 counts chains of divisors with strictly increasing quotients > 1.
Programs
-
Mathematica
cen[n_]:=If[n==1,{{1}},Prepend[#,n]&/@Join@@cen/@Select[Divisors[n],#
Formula
G.f.: x + Sum_{k>=1} a(k) * x^(k*(k + 1)) / (1 - x^k). - Ilya Gutkovskiy, Nov 03 2021
Comments