A342085 Number of decreasing chains of distinct superior divisors starting with n.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 4, 2, 2, 1, 11, 2, 2, 3, 4, 1, 7, 1, 10, 2, 2, 2, 15, 1, 2, 2, 10, 1, 6, 1, 4, 5, 2, 1, 26, 2, 5, 2, 4, 1, 11, 2, 10, 2, 2, 1, 21, 1, 2, 5, 20, 2, 6, 1, 4, 2, 7, 1, 39, 1, 2, 5, 4, 2, 6, 1, 23, 6, 2, 1
Offset: 1
Keywords
Examples
The a(n) chains for n = 2, 4, 8, 12, 16, 20, 24, 30, 32: 2 4 8 12 16 20 24 30 32 4/2 8/4 12/4 16/4 20/5 24/6 30/6 32/8 8/4/2 12/6 16/8 20/10 24/8 30/10 32/16 12/4/2 16/4/2 20/10/5 24/12 30/15 32/8/4 12/6/3 16/8/4 24/6/3 30/6/3 32/16/4 16/8/4/2 24/8/4 30/10/5 32/16/8 24/12/4 30/15/5 32/8/4/2 24/12/6 32/16/4/2 24/8/4/2 32/16/8/4 24/12/4/2 32/16/8/4/2 24/12/6/3 The a(n) ordered factorizations for n = 2, 4, 8, 12, 16, 20, 24, 30, 32: 2 4 8 12 16 20 24 30 32 2*2 4*2 4*3 4*4 5*4 6*4 6*5 8*4 2*2*2 6*2 8*2 10*2 8*3 10*3 16*2 2*2*3 2*2*4 5*2*2 12*2 15*2 4*2*4 3*2*2 4*2*2 3*2*4 3*2*5 4*4*2 2*2*2*2 4*2*3 5*2*3 8*2*2 4*3*2 5*3*2 2*2*2*4 6*2*2 2*2*4*2 2*2*2*3 4*2*2*2 2*2*3*2 2*2*2*2*2 3*2*2*2
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
Crossrefs
The restriction to powers of 2 is A045690.
The inferior version is A337135.
The strictly inferior version is A342083.
The strictly superior version is A342084.
The additive version not allowing equality is A342098.
A001055 counts factorizations.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
Programs
-
Maple
a:= proc(n) option remember; 1+add(`if`(d>=n/d, a(d), 0), d=numtheory[divisors](n) minus {n}) end: seq(a(n), n=1..128); # Alois P. Heinz, Jun 24 2021
-
Mathematica
cmo[n_]:=Prepend[Prepend[#,n]&/@Join@@cmo/@Select[Most[Divisors[n]],#>=n/#&],{n}]; Table[Length[cmo[n]],{n,100}]
Formula
a(2^n) = A045690(n).
Comments