A342086 Number of strict factorizations of divisors of n.
1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 9, 2, 5, 5, 7, 2, 9, 2, 9, 5, 5, 2, 16, 3, 5, 5, 9, 2, 15, 2, 10, 5, 5, 5, 18, 2, 5, 5, 16, 2, 15, 2, 9, 9, 5, 2, 25, 3, 9, 5, 9, 2, 16, 5, 16, 5, 5, 2, 31, 2, 5, 9, 14, 5, 15, 2, 9, 5, 15, 2, 34, 2, 5, 9, 9, 5, 15, 2, 25, 7, 5
Offset: 1
Keywords
Examples
The a(1) = 1 through a(12) = 9 factorizations: () () () () () () () () () () () () (2) (3) (2) (5) (2) (7) (2) (3) (2) (11) (2) (4) (3) (4) (9) (5) (3) (6) (8) (10) (4) (2*3) (2*4) (2*5) (6) (12) (2*3) (2*6) (3*4)
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
A version for partitions is A026906 (strict partitions of 1..n).
A version for partitions is A036469 (strict partitions of 0..n).
A version for partitions is A047966 (strict partitions of divisors).
The non-strict version is A057567.
A000009 counts strict partitions.
A001222 counts prime-power divisors.
A005117 lists squarefree numbers.
Programs
-
Maple
sf1:= proc(n,m) local D,d; if n = 1 then return 1 fi; D:= select(`<`,numtheory:-divisors(n) minus {1},m); add( procname(n/d,d), d= D) end proc: sf:= proc(n) option remember; sf1(n,n+1) end proc:f:= proc(n) local d; add(sf(d),d=numtheory:-divisors(n)) end proc:map(f, [$1..100]); # Robert Israel, Mar 10 2021
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Length[Select[facs[k],UnsameQ@@#&]],{k,Divisors[n]}],{n,30}]
Comments