cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342088 Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Examples

			Triangle begins:
  n\k| 0   1     2      3       4       5       6       7      8
  ---+----------------------------------------------------------
   0 | 1
   1 | 1,  1
   2 | 1,  4,    2
   3 | 1,  9,   18,     6
   4 | 1, 16,   84,    96,     24
   5 | 1, 25,  260,   780,    600,    120
   6 | 1, 36,  630,  4080,   7560,   4320,    720
   7 | 1, 49, 1302, 15330,  61320,  78120,  35280,   5040
   8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
		

Crossrefs

Cf. A000012 (k=0), A000290 (k=1), A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6), A342075 (k=7).
Cf. A334279.

Programs

  • Mathematica
    T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]

Formula

T(n,n) = n!.
T(n,k) = Sum_{i=0..2*k} A334279(k,i)*n^i.
T(n,k) = n*T(n-1,k-1) + n*(n-1)*T(n-2,k-1).
T(n,k) = Sum_{j=0..k} n!k!/((n-k-j)!(k-j)!j!).