A342088 Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.
1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 ---+---------------------------------------------------------- 0 | 1 1 | 1, 1 2 | 1, 4, 2 3 | 1, 9, 18, 6 4 | 1, 16, 84, 96, 24 5 | 1, 25, 260, 780, 600, 120 6 | 1, 36, 630, 4080, 7560, 4320, 720 7 | 1, 49, 1302, 15330, 61320, 78120, 35280, 5040 8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Links
- Peter Kagey, Rows n = 0..100, flattened
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Wikipedia, Cross-polytope
- Wikipedia, TurĂ¡n graph
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]
Formula
T(n,n) = n!.
T(n,k) = Sum_{i=0..2*k} A334279(k,i)*n^i.
T(n,k) = n*T(n-1,k-1) + n*(n-1)*T(n-2,k-1).
T(n,k) = Sum_{j=0..k} n!k!/((n-k-j)!(k-j)!j!).