cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343453 The number of 3's minus the number of 2's among the first n terms of A342101.

Original entry on oeis.org

0, -1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Matthew Malone, Apr 15 2021

Keywords

Comments

It appears that the sequence never goes below -1 and increases without bound.
It appears that if the first appearance of a number x occurs at index n and the first appearance of x+1 appears at index m then m/n approaches 4 as x increases.

Examples

			A342101 = [1, 2, 3, 1, 3, ...]. By the fifth term of A342101 we see 2 terms with value 3, and a single term with value 2, so a(5) = 2 - 1 = 1.
		

Crossrefs

Cf. A342101.

Programs

  • Kotlin
    fun a(iter: Int): List = runningSum(twosVersusThrees(iter))
    fun runningSum(a: List) = a.drop(1).fold(listOf(a[0])) { acc, cur ->
        acc + (acc.last() + cur)
    }
    fun twosVersusThrees(iter: Int): List = removeMiddle(listOf(0,-1,1), iter)
    fun removeMiddle(initial: List, iter: Int): List {
        if (iter < 2) return initial
        val prev = removeMiddle(initial, iter-1)
        return prev + prev.subList(0, (prev.size - 1) / 2) + prev.subList((prev.size + 1) /2, prev.size)
    }
    
  • Mathematica
    Block[{a = {}, s = Nest[Join[#, Drop[#, {(Length[#] + 1)/2}]] &, Range[3], 6], c}, Array[Set[c[#], 0] &, 3]; Do[c[ s[[i]] ]++; AppendTo[a, c[3] - c[2]], {i, Min[Length@ s, 104]}]; a] (* Michael De Vlieger, May 01 2021 *)
  • PARI
    \\ See links.
Showing 1-1 of 1 results.