A342105 Arithmetic numbers (A003601) that are not balanced numbers (A020492).
5, 7, 11, 13, 17, 19, 20, 21, 22, 23, 27, 29, 31, 33, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 73, 77, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 107, 109, 110, 111, 113, 114, 115, 116
Offset: 1
Keywords
Examples
Sigma(21) = 32, tau(21) = 4 and phi(21) = 12, hence tau(21) divides sigma(21), but phi(21) does not divide sigma(21), so 21 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): filter:= q -> (sigma(q) mod tau(q) = 0) and (sigma(q) mod phi(q) <> 0) : select(filter, [$1..120]);
-
Mathematica
Select[Range[120], Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] == {True, False} &] (* Amiram Eldar, Mar 05 2021 *)
-
PARI
isok(m) = my(s=sigma(m)); !(s % numdiv(m)) && (s % eulerphi(m)); \\ Michel Marcus, Mar 05 2021
Comments